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Correction for “Patterns of sociocognitive stratification and peri-
natal risk in the child brain,” by Dag Alnæs, Tobias Kaufmann,
Andre F. Marquand, Stephen M. Smith, and Lars T. Westlye,
which was first published May 14, 2020; 10.1073/pnas.2001517117
(Proc. Natl. Acad. Sci. U.S.A. 117, 12419–12427).
The authors wish to note the following: “We discovered that

for a subset of the behavioral measures, ∼20% of the participants
had the 1-y follow-up data included instead of the baseline mea-
sures. Reanalysis using baseline data only yielded close to identical
results, with mode subject weights as well as mode variable weights
correlating r > .98 between the original and corrected analysis. In
summary, all results are retained, and none of the conclusions
change. A PDF showing the original and updated results as well as
figures is available in the OSF repository associated with the
manuscript: https://osf.io/m39yk/.”
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The expanding behavioral repertoire of the developing brain
during childhood and adolescence is shaped by complex brain–
environment interactions and flavored by unique life experiences.
The transition into young adulthood offers opportunities for ad-
aptation and growth but also increased susceptibility to environ-
mental perturbations, such as the characteristics of social relationships,
family environment, quality of schools and activities, financial secu-
rity, urbanization and pollution, drugs, cultural practices, and val-
ues, that all act in concert with our genetic architecture and biology.
Our multivariate brain–behavior mapping in 7,577 children aged 9
to 11 y across 585 brain imaging phenotypes and 617 cognitive,
behavioral, psychosocial, and socioeconomic measures revealed
three population modes of brain covariation, which were robust
as assessed by cross-validation and permutation testing, taking into
account siblings and twins, identified using genetic data. The first
mode revealed traces of perinatal complications, including preterm
and twin birth, eclampsia and toxemia, shorter period of breast-
feeding, and lower cognitive scores, with higher cortical thickness
and lower cortical areas and volumes. The second mode reflected a
pattern of sociocognitive stratification, linking lower cognitive
ability and socioeconomic status to lower cortical thickness,
area, and volumes. The third mode captured a pattern related
to urbanicity, with particulate matter pollution (PM25) inversely
related to home value, walkability, and population density, as-
sociated with diffusion properties of white matter tracts. These
results underscore the importance of a multidimensional and
interdisciplinary understanding, integrating social, psychological,
and biological sciences, to map the constituents of healthy devel-
opment and to identify factors that may precede maladjustment
and mental illness.

population imaging | neurodevelopment | childhood/adolescence |
psychology | neuroscience

The complexity and idiosyncratic characteristics of the human
mind originate in an intricate web of interactions between

genes; brain circuits; behaviors; and economic, social, and cul-
tural factors during childhood and adolescence. The major life
changes associated with the transition into young adulthood of-
fer opportunities for adaptation and growth but also increased
susceptibility to detrimental perturbations, such as the charac-
teristics of social and parental relationships, family environment,
quality of schools and activities, economic security, urbanization
and pollution, drugs, cultural practices, and values, that all act in
concert with our genetic architecture and biology (1). A multi-
dimensional understanding of the interplay of these factors is
paramount to identify the constituents of healthy development
and to identify factors that may precede maladjustment and
mental illness.
Population-based neuroimaging now allows us to take a bird’s-

eye view on this stupendous multiplicity and to bring hitherto
unseen patterns into focus (2). The Adolescent Brain Cognitive

Development (ABCD) study (3) currently provides brain images
of more than 10,000 children aged 9 to 11 y at baseline. The
participants are recruited and assessed across 21 sites in the
United States, making it one of the largest neurodevelopmental
imaging resources available. In addition to multimodal MRI, the
ABCD study includes a broad range of cognitive, behavioral,
clinical, psychosocial, and socioeconomic measures. Importantly,
these participants will be followed up for over a 10-y period,
allowing the opportunity to reveal robust population-level mul-
tivariate brain–behavior associations in neurodevelopment and
to later assess their predictive value as follow-up data become
available. While each neuroimaging feature typically explains
a minute amount of unique variance in behavioral outcome (4,
5), their combined predictive value is nonnegligible, including
predictive patterns for identification of individuals (6, 7) and
characteristics such as age (8, 9), cognitive ability (10), and psy-
chopathology (10). This added value of multivariate and combi-
natorial approaches for prediction of complex traits is highly
analogous to the substantial polygenic accumulation of small
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Adolescence is a transition period between childhood to
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effects in the genetic architecture of complex human traits and
disorders (11, 12).
Adolescence is a transition period between childhood and

adulthood and a period of protracted brain maturation, associ-
ated with heightened sensitivity to the social and cultural envi-
ronment (13). For most individuals, this transition results in
successful acquirement of skills and coping strategies required
for adulthood and subsequent independence from caregivers;
however, it is also a period of increased risk for mental health
issues (14). Vulnerability is associated with neurodevelopmental
factors preceding illness, including growing up in low-socioeconomic
(SES) homes and childhood deprivation as well as reduced brain
integrity already in early life (15). Mapping positive and negative
factors impacting the brain as well as psychological adjustment
before and during the transition from childhood to adulthood is
therefore of pivotal importance. Combining levels of information
using latent-variable approaches which model all available infor-
mation may reveal interpretable patterns among multiple brain
imaging features and variables such as cognition and sociodemo-
graphics (5, 16). One recent example revealed that a wide range of
cognitive, clinical, and lifestyle measures constitute a positive–
negative dimension associated with adult brain network functional
connectivity (2).
Here we used an analogous approach in 7,577 children aged 9

to 11 from the ABCD study, collected across 21 sites across the
United States, combining canonical correlation analysis (CCA)
with independent component analysis (ICA) to derive population-
level modes of covariation, linking behavioral, psychosocial, so-
cioeconomic, and demographical variables (behavioral measures)
to a wide set of neuroimaging phenotypes. Each resulting mode
represents an association between a linear combination of be-
havioral measures with a separate combination of imaging fea-
tures that show similar variation across participants (16). In order
to avoid overfitting, which is particularly important when employing
data-driven approaches, and due to the high number of inter-
correlated features, CCA was performed after data reduction with
principal component analysis. Robustness and reliability of the
identified modes were assessed using stratified cross-validation to
avoid estimating the modes using one individual in a sibling/twin
pair and deriving out-of-sample scores for the other, and permu-
tation testing with restricted exchangeability, taking into account
siblings and twins based on participants’ genetic data. To express
results in the original variable space, CCA–ICA subject weights
were correlated back into the original data. Based on earlier re-
ports of population-level associations between measures of life
outcomes and brain connectivity (2) and structure (17) in adults
and the known and rising socioeconomic inequalities in the United
States (18), as well as the impact of socioeconomic factors on child
brain development (19, 20), we expected to find traces of social
stratification in the child brain.

Methods
ABCD Data Access.We accessed baseline MRI, behavioral, clinical, and genetic
data from ABCD Annual curated release 2.0.1. A flowchart describing the
processing and analysis steps is provided in SI Appendix, Fig. S1.

Behavioral, Clinical, Cognitive, and Demographical Data. Tabulated data were
imported and processed using R (https://cran.r-project.org). We accessed data
from 11,853 participants. SI Appendix, Table S1, lists the behavioral mea-
sures included the analysis. We used the function nearZeroVar from the R
package caret (v. 6.0-81, https://github.com/topepo/caret/) to identify and
exclude any continuous variables with zero or near-zero variance and cat-
egorical variables with a ratio of >0.95 for the most common compared to
the second most common response. For each remaining variable we derived
robust z scores by calculating each score’s absolute deviation from the me-
dian absolute deviation (MAD) (21) and removed values with a z > 4 (4 ×
MAD). Those with a z > 3 were manually inspected: e.g., measures of facility
income, time spent on phone, and several measures of area deprivation have
scores with z > 3 but were kept in the analysis. We then excluded variables

with less than 90% of retained datapoints, before excluding subjects with less
than 90% retained data across the retained variables. The remaining subjects
(n = 11,809) were included for further analysis.

MRI Imaging-Derived Phenotypes.We accessed T1-weighted and T2-weighted
(n = 11,534) and diffusion-weighted (DWI, n = 11,400) tabulated MRI data
from ABCD curated release 2.0.1. SI Appendix, Table S2, lists the MRI fea-
tures included in the analysis. We included participants who passed quality
assurance using the recommended quality control (QC) parameters (T1, n =
11,359; T2, n = 10,476; DWI, n = 10,414) described in the ABCD 2.0.1 Imaging
Instruments Release Notes and who had all included modalities available
(n = 9,811). ABCD preprocessing and QC steps are described in detail in the
methodological reference for the ABCD study (22). For each included im-
aging phenotype, we calculated the MAD for each score and removed values
with MAD >3. Subjects with less than 90% of features retained in any of the
imaging modalities and features with less than 90% of retained subjects
were excluded from analysis. The remaining subjects (n = 9,016) were in-
cluded for further analysis.

Genetic Data. We accessed genetic data for 10,627 participants to identify
siblings and twins. We used genome-wide complex trait analysis (23) to
create a genetic relationship matrix after performing the following filtering:
removal of SNPs in the major histocompatibility complex (25:35 Mb region
on chr6) and the inversion region of chr8 (7:13 Mb) and SNPs with geno-
typing rate <99%, minor allele frequency <5%, and pairwise pruning of
SNPs in linkage disequilibrium (r2 > 0.2, window of 5,000, step of 500). To
account for siblings and twins in the dataset, three groups were created
based on the following genetic relatedness cutoffs: nonsiblings, <0.4; sib-
lings, >0.4 and <0.6; and monozygotic (MZ) twins, >0.8, with the two latter
groups containing pairs of siblings/MZ twins. These three groups were used
for stratified cross-validation and creation of permutation exchangeability
blocks.

CCA.We performed CCA (24) using MATLAB R2019b. Participants with MRI,
behavioral, and genetic data (n = 7,577; mean age = 9.9 y, SD = 0.63 y,
males = 3,957) were included. We applied a rank-based normal trans-
formation to the behavioral/clinical data using palm_inormal from the
FMRIB Software Library Permutation Analysis of Linear Models (25)
(v. 0.52, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). Next, we residualized
all measures with respect to age and sex using linear models. Imaging
phenotypes were also residualized for site/scanner (using the scanners’
unique serial numbers), and volumetric features were also corrected for
estimated total intracranial volume (eTIV from Freesurfer). eTIV was also
included as variable in the analysis to capture associations with global
volume, in addition to the eTIV-corrected volumes capturing associations
with regional specificity. For both MRI and behavioral measures, missing
values were imputed with knnimpute, replacing missing data based on the
k nearest-neighbor columns based on Euclidian distance (k = 3). An alter-
native approach without imputation is described below and did not change
results. Data were then z-normalized and submitted (separately for imag-
ing and behavioral data) to principal component analysis (PCA; SI Appen-
dix, Fig. S2), to avoid issues with rank deficiency and to increase robustness
of estimated modes by avoiding fitting to noise. We extracted the first 200
components for both the imaging and behavioral data and submitted these
to CCA.

Cross-Validation. To assess the reliability and generalizability of the resulting
CCA modes we performed the following 10-fold cross-validation procedure:
For each iteration (n = 100) of the cross-validation loop the dataset was
randomly divided into 10 folds, stratified by the genetic relatedness groups,
and ensuring that sibling and twin pairs were kept together to avoid
training on one sibling/twin in a pair and testing on the other. While keeping
each fold (10% of participants) out once, we submitted the remaining data
(90% of participants) to PCA (separately for imaging and MRI data) and then
to CCA. Next, we multiplied the kept-out behavioral measure and MRI feature
matrices with the estimated PCA coefficient matrices, before multiplying the
resulting PCA scores with the canonical coefficients and then correlated the
resulting CCA scores. Finally, we took the average of these canonical correla-
tions across the 10 folds (SI Appendix, Fig. S3). This procedure was repeated
100 times to derive mean canonical correlations for kept-out data and used for
calculating P values after permutation testing. We also correlated the CCA
subject measure and MRI coefficients derived for kept-out participants with
those from the full analysis.
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Permutation Testing. To assess significance of the resulting CCAmodes, we ran
1,000 iterations of the same 10-fold cross-validation procedure described
above but with the order of participants of the imaging phenotype matrix
randomly permuted in each iteration, respecting twin/sibling relationships
and collecting canonical correlations for the kept rather than the kept-out
data to account for overfitting by the CCA. We then collected the maximum
canonical correlation across CCA modes (i.e., mode 1) for each permutation
to form a null distribution to calculate familywise error corrected P values. P
values for each of the CCA modes were calculated by dividing the count of
permuted maximum R values (including the observed value) ≥ the mean of
cross-validated R values by the number of permutations. CCA modes with
a corrected P value <0.01 were included for further analysis (SI Appendix,
Fig. S3).

CCA–ICA. The canonical variates become increasingly difficult to interpret due
to their orthogonality. Since we had more than one significant mode, and
following procedures described by Miller et al. (16), we used ICA to obtain
more interpretable modes: we extracted and combined the behavioral
and MRI CCA scores for the three significant variates, correlated these
with the original data matrix, transformed the correlations using a Fisher
Z-transform, and submitted these to ICA. We estimated three components
(the number of significant and extracted CCA canonical pairs) using fastICA
(26). The ICA subject weight correlations with the canonical variates are
shown in SI Appendix, Fig. S4. To assess the reliability and generalizability of
the ICA decomposition we reran 100 iterations of the 10-fold cross-validation
procedure described above, this time including ICA estimation after the PCA
and CCA step, and then correlated ICA subject weights derived from kept-
out data to those from the full analysis (SI Appendix, Fig. S3). To assess and
plot the significant CCA–ICA modes in the full original variable space, we
correlated the subject weights for each CCA–ICA mode with the original
age- and sex (+eTIV)-adjusted matrices. For each significant mode of pop-
ulation covariation, we also plotted the variable text/descriptions for the 35
variables with the highest explained variance in the original adjusted data
(lists of all variables and associated descriptions, correlations, and ICA weights
can be found in SI Appendix, Tables S3–S5). ICA subject weight histograms are
shown in SI Appendix, Fig. S5. The explained variance of single variables
ranged between 10 and 40% for the most highly involved items on these
population modes, which is in a similar range as reported employing a
similar approach in the adult UK Biobank sample (16). For visualization
purposes, we produced scatterplots using the highest-loading variables for
each mode, color-coded by each individual’s score on the respective modes
(SI Appendix, Fig. S6).

Consistency across Sex and Race/Ethnicity. To assess the degree of similarity of
the patterns across the sexes, we split the CCA–ICA subject weights by sex (SI
Appendix, Figs. S7–S9) and compared sex-specific subject-weight-with-vari-
able correlations to those estimated for the full analysis. Correlations for the
three modes ranged between r = 0.95 and r = 1. We also reestimated the
PCA, CCA, and ICA in males and derived out-of-sample canonical correlations
for females and vice versa (SI Appendix, Figs. S10 and S11), with no sibling/
twin pairs included. The aim of this work was not to make comparisons of
population subgroups but to detect general population patterns. Since
many of the included indicators relating to inequality and socioeconomics
are known to differ between ethnic minority groups, we did not regress
these variables out of the data. To show that the detected patterns are
generalizable we computed subject-weight-with-variable correlations for
groups based on parent-ascribed race/ethnicity (SI Appendix, Figs. S12–S14)
excluding those with a frequency <5% of the total sample (retaining “black,”
“white,” and “other”) and compared these to the full analysis. Correlations for
the three modes ranged between r = 0.76 and r = 1. Canonical correlations
plotted separately for these groups are shown in SI Appendix, Fig. S15. We also
performed a 10-fold cross-validation stratified by race, in which no sibling/twin
pairs were included, and separately computed average canonical correlations
for “black,” “white,” and “other.” These results suggest that the modes
capture variance both within and between race/ethnicity (SI Appendix, Fig.
S16). These results indicate that the patterns are generalizable across sexes and
ethnicity/race.

Siblings/Twins. In addition to the abovementioned tests of generalizability
across sex, race/ethnicity, and scanner/site, where no siblings/twin pairs were
included, confirming that the results are not driven by genetic relatedness,
we also plotted the canonical correlations for nonsiblings/siblings/MZ twins
(SI Appendix, Fig. S17), which confirm that the patterns are present across
these subgroups.

Consistency across Sites/Scanners. To further assess the generalizability and
robustness of the CCA–ICA patterns, we computed site/scanner-wise CCA–
ICA variable correlations and performed correlations comparing these to the
full model (SI Appendix, Figs. S18–S20). The pattern of the three modes are
mostly consistent across sites but with some sites deviating more from the
full analysis modes than others (r = 0.85 to r = 0.22). We also performed a
10-fold cross-validation stratified by scanner (SI Appendix, Fig. S21), and
leave-one-scanner-out and leave-one-scanner-model-out cross-validations (SI
Appendix, Figs. S22 and S23), in which no sibling/twin pairs were included,
which confirmed that the patterns are generalizable across sites and scan-
ners. All imaging phenotypes were adjusted for site; however, ABCD collects
data at 21 sites across the continental United States (https://abcdstudy.org/
about), and population-level demographical differences are expected.

Alternative Approach Without Imputation. To ensure that the results were not
affected by the imputation procedure formissing data points, we also used an
alternative and previously described approach (2) in which we estimated the
subject × subject covariance matrix, ignoring missing values, before projec-
ting this approximated covariance matrix to the nearest positive-definite
covariance matrix using the MATLAB tool nearestSPD (https://www.mathworks.
com/matlabcentral/fileexchange/42885-nearestspd), thereby avoiding the need
for imputation of missing values. The correlations between the CCA scores for
the first three modes between the original analysis using imputation and this
approach were r = 0.99, r = 0.96, and r = 0.96.

Alternative Number of PCA Components. To investigate the impact of choosing
a stricter criterion of inclusion of PCA we reran the analysis with 100 PCA
components, and compared the resulting CCA scores for the first threemodes
with those from the original analysis, yielding correlations of r = 0.98, r =
0.91, and r = 0.91.

Adjusting Data for age2. To address the possibility of nonlinear relationships
between age and the various demographic, clinical, and MRI measures
features we reran analysis with age2 added along with the original confound
variables and compared the resulting CCA–ICA subject weights for the first
three modes with those from the original analysis, yielding correlations of
r = 0.99, r = 0.96, and r = 0.97.

Accounting for Motion. To assess the impact of image quality on the results,
we used the mean framewise displacement for the DWI as well as for resting
state fMRI (rest-fMRI, available for n = 7,493) images as proxies (27) and
correlated these measures with the canonical variates. Correlations with the
included behavioral/MRI canonical scores were modest for both DWI motion
(variate pair 1, r = 0.11/r = 0.13; variate pair 2, r = −0.02/r = −0.02; variate
pair 3, r = −0.02/r = −0.03) and rest-fMRI motion (variate pair 1, r = 0.16/r =
0.16; variate pair 2, r = −0.05/r = −0.05; variate pair 3, r = −0.02/r = −0.04),
and the highest motion correlation was for DWI motion with MRI variate 4
(r = 0.22) which was excluded after statistical correction (SI Appendix, Figs.
S24 and S25). Correlations with motion for the CCA–ICA subject weights for
DWI/rest-fMRI motion were r = −0.02/0.04, r = 0.13/0.18, and r = 0.04/0.09
for modes 1 to 3, respectively (SI Appendix, Tables S6 and S7). Correlations
between unadjusted and DWI/rest-fMRI motion-adjusted CCA–ICA subject
weights were all r > 0.98. Adjusting CCA–ICA subject weights for DWI mo-
tion did not change its correlations with the included variables (all r > 0.99
between original and adjusted results; SI Appendix, Figs. S26–S28).

Data Availability. The data, as well as release notes including documentation
of measures, scanning protocols, and imaging QC, are publicly available and
can be accessed using the following National Institute of Mental Health data
archive: http://dx.doi.org/10.15154/1503209. Code for running the analysis is
publicly available at the following Open Science Framework repository:
https://doi.org/10.17605/OSF.IO/M39YK.

Results
We identified three distinct modes of covariation, linking brain
features to perinatal and early life events, sociocognitive factors,
and urbanicity (Fig. 1). Canonical correlations for the first three
modes were significant and robust as assessed by 10-fold cross-
validation and permutation (out-of-sample r = 0.61, r = 0.42, and
r = 0.38, all permuted-P = 0.001; SI Appendix, Fig. S3).
Mode 1 links perinatal factors and obstetric complications to

cognitive ability and brain morphology in late childhood (Fig. 2).
Having a twin, premature birth, birth complications requiring
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oxygen, Caesarian section, (pre)-eclampsia, toxemia, and jaundice
are associated with shorter duration of breastfeeding, parent-
reported delayed motor development, and lower cognitive scores
and linked to a pattern of cortical morphometry and white matter
diffusion measures in several brain regions, with lower cortical
volume and area and higher thickness in middle temporal, lateral
orbitofrontal, and inferior parietal cortex among the highest-
loading imaging features.
Mode 2 captures a pattern of economic deprivation and pov-

erty, with the highest loading measures being related to the area
deprivation index, such as parent unemployment, neighborhood
median household income, income disparity, and violence (Fig.
3). The mode links these measures to lower maternal age at child
birth; lower parent education level; unplanned pregnancy;
shorter duration of breastfeeding; higher number of half-siblings;
higher levels of religiosity; and the child having fewer nightly
sleep hours on average, lower grades in school, and worse per-
formance on cognitive tests, jointly forming a dimension of soci-
ocognitive stratification. This dimension is associated with lower
cortical thickness, area, and volume, with total volume, lateral
occipital cortical volumes and thickness, and bilateral lingual
thickness among the highest-loading imaging features.

Mode 3 links higher air particle matter (PM2.5) and area
deprivation to lower population density, lower levels of NO2,
lower neighborhood walkability, lower home value and rent but
higher home ownership percentage, higher number of half-
siblings, and living in a state which has not legalized marijuana
for medical use (as of 2016). The mode (Fig. 4 and SI Appendix,
Table S5) is further associated with reporting emerging signs of
puberty such as body hair and with lower area and volumes
across the cortex, as well as with white matter indices such as
fractional anisotropy, radial diffusivity, neurite density, and tract
volumes, with the highest loading measures being related to the
parahippocampal cingulum, the uncinate fasciculus, and corpus
callosum.

Discussion
Adolescence is a transition period between childhood and adult-
hood, associated with heightened sensitivity to the social and
cultural environment (13). While for most individuals the transi-
tion results in successful acquirement of skills and coping strate-
gies required for adulthood and subsequent independence from
caregivers, it also coincides with increased risk for mental health
issues and psychological madadjustment (14). Research addressing
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Fig. 1. Rows represent CCA–ICA modes 1–3. Each mode represents an association between a linear combination of behavioral measures (Left) with a
separate combination of imaging features (Right). x axes represent the numbered behavioral measures/imaging features. Behavioral measures legend shows
starting location on x axis for each measure (in parentheses). y axes show the correlation between each included variable with the CCA–ICA subject weights.
DWI measures abbreviations: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); radial diffusivity (RD); neurite density (ND).
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the social, economic, and environmental conditions affecting ad-
olescent development, facilitating health, and leading to fulfilling
adult lives is therefore critical. Here we discuss three modes of
population covariation, each linking behavioral, clinical, psychosocial,

socioeconomic, and demographical measures to neuroimaging in
7,577 children aged 9 to 11 y.
The first mode links obstetric complications and early life fac-

tors such as duration of breastfeeding and motor development,
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Fig. 2. Mode 1 links obstetric and perinatal complications to cortical area, volume, and thickness. Numbers on the left are correlations between each
participant measure and MRI feature with mode 1 CCA–ICA subject weights. Hot and cold colors represent positive and negative correlations, respectively.
Text on the right represents the participant measures (black) and imaging features (orange). The top 35 items are shown; for a full list of all measures and
their respective correlations, see SI Appendix, Table S3.
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with cognitive ability, cortical surface area, thickness, and volume
in late childhood. Preterm birth and obstetric complications are
associated with accelerated neonatal brain growth (28), linked to

cognitive deficits in childhood and prolonged cognitive maturation
into adolescence (29). Deficits may persist through neuro-
development and into adulthood (30, 31) and constitute risk
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Fig. 3. Variables with the highest correlations with CCA–ICA mode 2 subject weights are shown, forming a dimension of sociocognitive stratification, which is
associated with total intracranial volume and regional cortical volumes and thickness. Numbers on the left are correlations; hot and cold colors represent
positive and negative correlations, respectively; and arrows indicate increasing positive/negative correlations. Text on the right represents the behavioral
measures (black) and imaging features (orange). The top 35 items are shown; for a full list of all measures and associated correlations, see SI Appendix,
Table S4.
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Fig. 4. The variables with the highest correlations with CCA–ICA mode 3 subject weights, linking air pollution, area deprivation, walkability, and population
density to brain white matter indices. Numbers on the left are correlations; hot and cold colors represent positive and negative correlations, respectively; and
arrows indicate increasing positive/negative correlations. Text on the right represents the behavioral measures (black) and imaging features (orange). The top
35 items are shown; for a full list of all measures and associated correlations, see SI Appendix, Table S5.
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factors for mental disorders (32, 33). The present results
support that children with a history of obstetric and perinatal
complications show delayed brain development in late child-
hood and are consistent with reports associating birth weight with
cortical area and brain volume in childhood and adolescence (34),
underscoring the importance of taking perinatal factors into ac-
count when studying child and adolescent brain development.
The second mode captures a sociocognitive stratification pat-

tern associated with brain volume and regional measures of cor-
tical thickness, area, and volume. Conceptually, the mode shares
similarities with a positive–negative population mode linked to
brain functional connectivity (2) and structure (17) in adults. The
mode links several positive and negative life events and environ-
mental circumstances, with the highest loading factors being related
to socioeconomic status, such as poverty, parent unemployment,
and education level. It further captures several factors known to
be related to social deprivation, such as degree of family planning
and early pregnancies, neighborhood level of violence, and level of
religious beliefs. These constitute important environmental con-
ditions for neurodevelopment that these children receive from
their parents, their community, and society at large. Consistent
with the literature on the effect of socioeconomic deprivation on
child development, this mode is also associated with less sleep,
worse school performance, and lower cognitive ability (35). Cog-
nitive ability is moderately heritable in childhood and adolescence
(10, 36, 37), and this likely partly explains the association between
child cognition, academic performance, and SES (38). However,
the effects of poverty, low socioeconomic status, and early life
adversity on brain and cognitive development (20, 39) also un-
derscore the role and importance of social policies aimed at re-
ducing disparities (40) that put some children at a disadvantage,
often with lifelong consequences for opportunities, mental and
physical health, and quality of life. The neurotypical develop-
mental trajectory at this age is characterized by apparent cortical
thinning, likely partly reflecting synaptic pruning (41) and myeli-
nation (42). Thicker cortex with higher SES is consistent with
reports of accelerated brain maturation in children from low-SES
families (43, 44). Indeed, across species and in humans, early life
adversity is associated with accelerated maturation of neural sys-
tems, possibly at a cost of increased risk for later mental health
problems (45).
The third mode reflects an inverse association between par-

ticulate matter air pollution (PM2.5) and area deprivation on one
side and home value, walkability, and population density on the
other. Specific geographical information for this mode cannot be
discerned, since the ABCD does not provide geographical data
about its participants; however, this mode fits a known socioeco-
nomic settlement pattern: low-pollution, high-walkability “sweet
spot” neighborhoods in urban areas are typically skewed toward
higher-SES households, contrasted with high-pollution, low-
walkability “sour spot” neighborhoods associated with lower in-
come (46). Fine particulate matter has harmful effects on brain
and cognitive health in both adults (47) and children (48), with
white matter injury suggested as a putative mechanism (49). Expo-
sure to PM2.5 is associated with adverse health outcomes and dis-
proportionally affects lower-income households (50), underscoring
the importance of mapping environmental influences on brain
development. Interestingly, this pattern was associated with the
legal status of medical marijuana (as of 2016), possibly indicative
of geographical differences for this pattern across the US states.
Here we document an association with cortical area and volumes,
as well as associations with diffusion properties of brain white
matter pathways, in particular the parahippocampal cingulum,
uncinate fasciculus, corpus callosum, and forceps minor.
While these population level patterns are highly interesting,

the cross-sectional and the nonexperimental design warrant cau-
tion. People and their brains, genes, and environments are not
varying randomly but are highly correlated (51), likely along

multiple dimensions, which complicates causal and mechanistic
inference. This is especially relevant for population-based neuro-
imaging, in which subtle confounds can induce spurious associa-
tions (5). These general caveats notwithstanding, these valuable
resources represent an unprecedented opportunity to reveal cova-
rying patterns of sociodemographics, cognitive abilities, mental
health, and brain imaging data, beyond simple bivariate associations,
which are potentially highly informative of the biology, psychology,
and sociology of childhood and adolescent brain development and
psychological adaptation.
In contrast to the standard regression approach which models

one outcome variable at a time and typically includes only a few
covariates, the combined multivariate approach employed here
considers the full pattern of covariability between variables. Our
approach is therefore well suited for capturing population pat-
terns by maximizing statistical power. However, it does not allow
for interpretation of specific associations between pairs of vari-
ables. Overfitting can be a challenge with multivariate approaches,
in particular in small samples and for complex models (52). Cur-
rently, there are no comparable samples to ABCD in which to
independently assess the generalizability of the results. However,
the current results were obtained in a large sample, using data
reduction as well as 10-fold cross-validation with all relevant
analysis steps performed within the cross-validation and permu-
tation loop, to avoid overfitting and assess generalizability. All of
the patterns are purely correlational and also treated analytically
and reported as such. It is also entirely possible, and highly
probable, that these patterns are further correlated with other
important phenomena not measured or included in the current
analysis. In-scanner subject motion affects image quality and can
influence associations between imaging and nonimaging variables,
and taking this into account is particularly important in child and
adolescent samples (27). While we cannot completely rule out
motion as a confound, our follow-up analysis suggests that the
detected patterns cannot simply be attributed to individual dif-
ferences in subject motion. The current approach also effectively
captures differential patterns involving the same measures. For
example, higher cortical thickness, indicative of delayed matura-
tion, is independently associated with sociocognitive stratification,
higher cognitive ability, and SES, as well as with obstetric and
perinatal complications, lower cognitive ability, and delayed speech
and motor development. Another example is duration of breast-
feeding, which was independently associated both with obstetric
complications and with sociocognitive stratification, associated with
differential patterns of brain differences. It is also worth noting that
for all of the three brain–behavior patterns, variables related to the
environments the children inhabit, at different temporal and geo-
graphical scales, are among the highest loading features. These
children will be followed up with new brain scans every second year
for the next 10 y, and assessing the predictive value of these pat-
terns for later maladjustment and mental illness as the participant
transition from childhood into adolescence and early adulthood
will be important follow-ups to this study. These independent and
coexisting associations with brain structure emphasize the impor-
tance of multidimensional considerations for understanding child
and adolescent neurodevelopment and support that political
priorities and decisions aiming to improve health outcomes and
adaptation during transformative life phases should be based on
interdisciplinary perspectives integrating social, psychological, and
biological sciences (53).
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